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Abstract-In this paper, we develop a face recognition system 
with a rejection mechanism for imposter or unseen subjects. In 
order to boost the recognition rate and provide the promising 
rejection accuracy, a margin-enhanced space is derived by 
reweighting the LSDA space via explicitly imposing the 
constraint of the k-NN classification rule. In this space, not only 
the local discriminant structure of data can be extracted but the 
enhanced pairwise distance can be used to model the acceptance 
and rejection likelihood probability. According to the Bayes 
decision rule, the unseen subject can be rejected if the likelihood 
ratio is smaller than the estimated threshold. Note that the 
rejection performance based on the likelihood ratio is more 
tolerable than the pre-defined distance only. Experimental results 
show that the proposed system not only yields the higher 
recognition rate than other subspace learning methods but also 
provides the promising rejection accuracy on the challenging 

databases of various lighting conditions and facial expression. 

Keywords-face recognition, graph-based subspace learning, 
margin-enhanced space 

I. INTRODUCTION 

Automatic face recognition is an essential requirement in a 
wide range of applications, including the surveillance system, 
security systems, access control systems, etc. For these 
applications, not only high recognition performance but the 
promising accuracy, i.e. the rejection of imposter or unseen 
subjects, are required. 

Among those appearance-based face recognition methods, 
the most well-known algorithms are Eigenface [10] and 
Fisherface [16]. However, for non-linearly distributed data 
such as those associated with non-frontal facial images and 
under different lighting conditions, the classification 
performances of the PCA and LDA are somewhat limited due 
to their essential assumption of the linear data structure. To 
resolve this problem, the kernel-based algorithms, such as 
Kernel PCA and Kernel Fisherface [9], [13], [19], are explored 
by extending the linear dimensionality reduction algorithms 
into non-linear ones by performing the algorithms on higher or 
infinite dimensional feature spaces. However, for those 
algorithms, the local structure of data is not explicit considered, 
which is important for classification purpose. Unlike kernel 
methods, manifold learning or subspace learning methods are 
recently developed to investigate the local information and the 

essential structure of data manifold, including isometric feature 
mapping (ISOMAP) [14], locally linear embedding (LLE) [11], 
Laplacian eigenmap (LE) [2], locality preserving projections 
(LPP) [7], and marginal Fisher analysis (MFA) [20]. These 
methods can provide the promising recognition performance by 
using k-NN classifier in the corresponding low-dimensional 
subspace but imposter classification is not further discussed. 

To improve the classification performance for k-NN 
classifier, several distance metric algorithms [1], [8], [17], [18] 
are proposed to investigate the data properties from class labels 
recently. Instead of using Euclidean distance which ignores the 
statistical properties of data, Mahalanobis distance metric is 
learned based on various object function [1], [17], [8], [15], 
[18]. Among them, Large Margin Nearest Neighbor (LMNN) 
[8], [17] learn a Mahalanobis distance metric by imposing the 
constraint of k-NN classification rule. Thus, via the learned 
metric, k-nearest neighbors always belong to the same class 
while data from different classes are separated by a large 
margin. 

Inspired from above studies, we propose a space learning 
method with the goal that in the proposed space, i.e. margin­
enhanced space, not only the local geometric and 
discriminative structure of data can be preserved but also the 
enhanced distance can be used for the imposter classification. 
Moreover, rather than using a pre-defined distance threshold to 
reject imposter or unseen subject, which is hard to be estimated 
and less flexible for various kinds of application, the 
acceptance and rejection likelihood probabilities are modeled 
by Gaussian-like distribution based on the nearest neighbor (I­
NN) distance information. Then the likelihood ratio can be 
applied for the imposter classification to reject or accept the 
test facial image before face recognition. 

II. SYSTEM FLOWCHART 

Fig. 1 shows the flowchart of the proposed face recognition 
system with the imposter classification. In the training process, 
the training data X=(Xp, Xl) are composed of two facial image 
sets: the recognition face set XF and the imposter face set Xl. 
The recognition face set X F = {xl' X2 , ... , X N} contains total N 
(=cxm) facial images and each image Xi E XF has the 
corresponding class label £(Xi) E {1,2, ... , c} , where c is the 
number of classes (subjects) and each class is complied 
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Figure I. Flowchart of the proposed face recoguition system with imposter classification. 

m D-dimensional (32x32-pixel) facial images of arbitrary slight 
head motions and various lighting conditions. Besides, 
different from other recognition systems, the imposter face set 
Xl = {x N+!' X N+2 , ••• , X N+Z } is incorporated for the development 
of imposter classification, which consists of Z facial images 
and the label of each image Xi E XI is R(xi) = u , i.e. imposter 
class and u O!: {1,2, ... , c} • 

As shown in Fig. 1, the face set XF is used for margin­
enhanced space creation. To preserve the local discriminant 
structure of facial images, local sensitive discriminant analysis 
(LSDA) [5] is applied to extract the low-dimensional 
embeddings for each image. Although most data of different 
labels in the LSDA space can be well-separated, there exists 
data that cannot be correctly classified. Besides, no explicit 
constraint on margin distance is imposed for the LSDA 
function and thus in the LSDA space the threshold is hard to be 
estimated for the imposter classification. Therefore, the 
transformation A is reweighted by a matrix E, i.e. P=AE, and 
in the resulting margin-enhanced space, not only the 
recognition performance is improved but also the enhanced 
margin distance can be used for imposter classification. 
Subsequently, both facial images in the recognition face set XF 
and imposter face set XI are projected to the margin-enhanced 
space and then the I-NN distance samples obtained from XF 
and XI are used to model the acceptance and rejection 
likelihood probability, respectively. 

For the test process, the k-NN classifier is applied for the 
face recognition (k=3 in our system). Note that before 
outputting the final recognition result, the Bayes decision rule 
is applied for the imposter classification to reject or accept the 
test image. 

III. RE- WIGHTING LSDA SPACE FOR MARGIN- ENHANCED 

SPACE 

A margin-enhanced space is introduced by reweighting the 
LSDA space via imposing k-NN classification rule and unit 
margin constraint with a SDP formulation [17]. Not only the 
local geometric and discriminative structure of data can be 
extracted for the face recognition but also the enhanced 

pairwise distance in the margin-enhanced space is more 
suitable for imposter classification. 

A. Graph-based Space Creation Using LSDA 

For the face recognition, the local structure of data is 
important especially for facial images with appearance 
variations in image space. In this paper, LSDA [5] is applied to 
extract the low-dimensional discriminant feature to preserve 
both data discriminant and geometrical structure. Let 
N(xi) = {xi , ... , xf} be the set of k nearest neighbors for each 
image Xi E XF , and the set N(Xi) can equal to sum of two 
subsets Nb(xi) and Nw(xi)' each of which contain the data with 
the same and different class label from Xi as 

N w ( X ; ) = {x j II (x) = I ( Xi)' 1 :s; j :s; k} 
N b (x i) = {x j II (x j ) ;t I (x ;), 1 :s; j :s; k} 

(1) 

where Nb(xj)uNw(xj)=N(xj) and Nb(xJnNw(xJ= 0. 
According to (1), the within-class graph Gw= {X, Ww} and 
between-class graph Gb= {X, W b } are constructed where the 
vertices X correspond to all face images in XF and the weight 
matrices W wand W b represent the connection between each 
image Xi to its local neighbors of same and different classes as 

{I , if:x; E N,jx) and � E N,jx;) Ww,ij = 0 , otherwise 

� ={l 
, if Xi E Nixj) and Xj E Nixi) 

,1} 0 ,  otherwise 

(2) 

(3) 

Then, the low-dimensional embeddings yT = {Y!' ... 'YN} (I-D 
case for example) are obtained according to the criterions that 
the distance of same class should be minimized while the 
distance between different classes should be maximized: 

min Li,jllYi -Y jrWw,ij = min yTLw y 

max Li,j llYi -Yj I12Wb,ij =maxyTLb y 

(4) 

(5) 
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where Lw= Dw-Ww and Lb= Db-Wb are Laplacian matrix of the 
graph Gw and Gb, respectively; Dw and Db are diagonal matrix 
to represent the connection degrees. By combining the 
criterions in (4) and (5), the local margin between same and 
different classes can be maximized by 

(6) 

Note that LSDA imposes a constraint yTDwY=I for the scale 
invariance [4], [5], [8]. In order to process the new input data, a 
linear transformation vector a is assumed that the low­
dimensional embedding Yi can be obtained from Xi by 

Y i = Xi T a and thus (6) can be rewritten as 

(7) 

where aE [0,1] is a constant to weight the distance between 
same and different classes. In general case, the D-by-d 
transformation matrix A=[aj, ... ,ad] is given by the 
eigenvectors corresponding d biggest eigenvalue to generalized 
eigenvalue problem X(aLb +(I-a)Ww)XTa=�Ta, where d«D. 

B. Margin-Enhanced Space Creation 

Although the discriminant structure has been discovered in 
the LSDA space and most projected data can be well-separated, 
there exists some bad-separated data especially for the non­
linear facial distribution of various pose and lighting 
conditions. Besides, the margin between different classes might 
be discordant in LSDA space because no explicit constraint is 
imposed on margin distance in (7). LSDA can still provide high 
recognition results because the discordant margin does not 
account for recognition performance; however, the margin 
distance in LSDA space can not be used for the imposter 
classification to reject the unseen subjects. 

Considering the above problem, a transformation matrix 
P E RDxd is proposed by reweighting the LSDA 
transformation A with a coefficient vector w that 
P =[w1a1 , W2a2"'" wdad] For the generality, the 
transformation P can be rewritten via the matrix form as 

P=AE (8) 

where E E Rdxd is a coefficient matrix. Via the learned 
transformation matrix P, the pairwise distance of bad-separated 
data can be locally adjusted meanwhile the distance between 
well-separated ones can keep separable in the resulting space, 
i.e. margin-enhanced space. Furthermore, the discordant 
margin can be repaired such that the nearest neighbor distance 
can be used for the imposter classification. Note that in our 
system, only the matrix E need to be estimated. 

According to the k-NN classification rule, the correct 
distance order between different label data should be: 

(9) where C(xi)"* C(xl) and C(xi) = C(x j ) 
where lip T (Xi -Xl )11 2 is the distance between different 
labeled (lata Xi and Xl, while lip T (Xi -X j )11 2 is the distance 
between same labeled data Xi and Xj' scalar � represents a unit 

margin and a nonnegative slack variable tSij/ is introduced to 
allow misclassification for the non-linearly distributed data. 
Although the transformation P is introduced to enhance the 
margin between different labeled data, the distance between 
data and the corresponding neighbors of same class should be 
keep close. Thus the cost function can be defined as [17] 

e(P) = (1-p)�)7ijllpT (Xi -xjf + 
y 

P�I17ij(1-Cil )[1 + IlpT (Xi -x)f -llpT (Xi -Xl )fl+ 
y 

(10) 

where l]ij E {O,l} indicates whether Xj is the same labeled 
neighbor of Xi, fifE {O,l} indicate whether Xi and Xl share the 
same class label, the scalar f3 can tune the importance between 
two terms and [z]+ = max(z,O) denotes the standard hinge 
loss. Note that the first term only penalizes large distances 
between each input Xi and its same labeled neighbors while the 
second term penalizes small distances between each data and 
its corresponding different labeled neighbors. As the definition 
of P in (8), the distance between data Xi and Xj in margin­
enhanced space becomes 

D(Xi' x) = IlpT (Xi -X )112 
= (Xi _x)T AEE T AT(Xi -X) 
=IIET(Yi-Y jf 

(11) 

where Yi and Yj are the low-dimensional embeddings in the 
LSDA space. Then the cost function in (10) can be rewritten 
as 

e(E) = (1-p)L.17ijIIET (Yi -y)f + 
y 

P�I17ij(I-Ci/) [l+IIET (Yi -Y jf -IIET (Yi -y,)II\ y 

(12) 

On the other hand, the d-by-d matrix M=EET (11) can be 
viewed as a Mahalanobis distance metric and (12) can be 
reformulated to a semi-definite programming (SDP) problem 
as [17] 

min Lij17ij(Yi -yjlM(Yi -Y)+ PLij/ 17ij(1-fii/)tSij/ 
sJ. (Yi -y/)TM(Yi -Y/)-(Yi -yjlM(Yi -Y j)�l-tSij/ 

tSij/ �o 
M>-O 

(13) 

The coefficient matrix E can be solved directly as in (12) [1], 
[6], which is prone to local minimum [8], or via separating the 
matrix M as M=EET [7]. Note that the matrix E can be 
restricted to a diagonal matrix by adding the additional 
constraint or other regularization terms in (12) and (13) to 
avoid overfitting [8]. 

IV. ACCEPTANCE- REJECTION LIKELIHOOD MODELING FOR 

IMPOSTER CLASSIFICATION 

The discordant margin distance can be avoided in the 
proposed margin-enhanced space and the nearest neighbor 
distance (I-NN distance) can be used for the imposter 
classification that the unseen subjects whose facial images are 
excluded from the training recognition face set XF will be 
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rejected. Note that XI is only composed of some facial images 
of unseen subjects for the rejection likelihood modeling. 

Rather than using a threshold based on the I-NN distance 
for the imposter classification, the posterior functions are 
applied to estimate the acceptance and rejection probability: 

(14) 

where p(QA) and p(QR) are the prior probabilities of the 
acceptance class QA whose facial images are included in the 
recognition face set Xp, and the rejection class QR whose facial 
images are excluded from XF• Both prior probabilities are 
assumed to be uniformly distribute and P(QA)+P(QR)=I. Note 
that the subjects whose images in the imposter face set XI are 
only part of QR (XICQR); p(d I QA) and p(d IQR) are the 
acceptance and rejection likelihood probability, respectively, 
and d is the I-NN distance between the image data to its 
nearest neighbor in the margin-enhanced space. Because the 
acceptance class QA is composed of c classes, the posterior 
probability P(QA I d) can be represented as a marginal 
probability P(QAId)=I.cP(QA,Cld) , where CE {1,2, .. .c} is an 
index of class. Thus, (14) for acceptance class QA becomes 

p(QA Id) =LP(QA,Cld) 
C 

(15) 

where the probability p(C I Q A) measures the probability of 
data generated from class C when data is classified as the 
acceptance class. p(C I Q A) can be estimated from the k-NN 
classification results without additional probability modeling 
[3], i.e. �C=SIQA)=ks/k, where k and ks is the total number of 
neighbors and the number of neighbors belonging to class s, 
respectively. Therefore, based on the I-NN distance d, an 
image data Xi can be classified as either acceptance class QA or 
rejection class QR in accordance with the following Bayes 
decision rule: 

(16) 

Generally, the prior probability p(QA) and p(QR) are 

unknown, and hence the threshold value of the likelihood ratio 
e is employed [12]. Equation (16) is rewritten as 

Acceptance class 
� = p(QR) =8 
< p(QA) Rejection class 

(17) 

If the likelihood ratio is lower than the threshold value e, the 
image data is classified as an imposter (unseen subject) and 
rejected for further recognition process. 

Before modeling the likelihood probabilities �dl QA,q and 
�dIQR)' all training face images X=(XF' XI) are projected to 
the margin-enhanced space via the transformation P (8) and 
data y=(yF,y/)=(pTXF, pTX/) are obtained, where YF = {Yl'''',YN} 
and YI ={YN+l'''''YN+Z} ' The label of Y i, l(Yi), is the same as the 

corresponding data Xi. To build the likelihood model �dIQA,q, 
each data Y i E Y F searches the nearest neighbor n 1 (y i ) 
among the set YF with the I-NN distance 
dA,c(YJ= IIYi -n1(yJf and the label of n1(Yi) is 
/(n1(yJE {1,2, .. "c} .  If the I-NN distance is small, the probability 
of accepting the data is high; otherwise the data might be an 
imposter. The likelihood probability should decrease or 
increase smoothly as the I-NN distance is getting large or 
small. Hence, for each class CE {1,2, .. .c} , the acceptance 
likelihood probability �dIQA,q is defined as (Fig. 1): 

P(dIQA,C) = j l (-(�-JiA'C)J2, -exp 
ZA C7A,c 

if d < JiA,c 
(18) otherwise 

Where ZA is the normalization term, f.1 A,C and (Y A,C is the 
sample mean and sample standard deviation for each class C, 
which are estimated from samples d A,C (Yi ), 

VYi = {Yi I Yi E Ypl(yJ = C} . 
As the similar process, each data Y i E Y I searches the 

nearest neighbors amon? the2set Y F and all I-NN distance 
samples dR(Yi)=JYi -n (Yi)11 are applied to model the 
rejection likelihoo probability �dl QR) as 

P(dIQR)= j 1 (-�d-,uR»)2, -exp 
ZR (jR 

if d > ,uR 

otherwise (19) 

where ZR is the normalization term, f.1R and (jR is the sample 
mean and sample standard deviation of all I-NN distance 
d R (Yi)' VYi E YI• Different from �dIQA,q, the large I-NN 
distance should be with high rejection probability P(dl QR) vice 
versa for small distance, Furthermore, the threshold value e 
(17) is set when the sum of recognition rate and rejection rate 
can be maximum for training data, which is the intersection 
point as shown in Fig. 2,c. Note that in Fig. 2,c the intersection 
point (recognition rate equals rejection rate) closer to the top­
right comer implies the better system performance. 

V. EXPERlMENTAL RESULT 

We compare the performance of the proposed margin­
enhanced space with other subspace learning methods, 
including Eigenface (PCA [9, 11]), R-LDA [21], supervised­
LPP [22] (designated as SLPP), MFA [20] and LSDA [5], for 
face recognition and unseen subject rejection under different 
lightings, poses, and expressions, Note that 3-NN classifier is 
applied in the following experiments, 

Both Extended Yale-B [23] and CMU PIE [24] database are 
used to evaluate our proposed system. The Extended Yale-B 
face database contains the facial images of 38 human subjects 
under 9 poses and 64 illumination conditions. We choose 64 
images of frontal pose under all illumination conditions. The 
CMU PIE face database contains the facial images of 68 human 
subjects under different poses, illumination conditions, and 
expressions. In our experiment, five near frontal poses (COS, 
C07, C09, C27, C29) and the corresponding images under 
different illuminations and expressions are used; thus we get 
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TABLE I. Recognition rate in different subspaces of Extended Yale-B 
and PIE databases ME' the proposed margin enhanced space -

YaieB YaieB PIE PIE 
G30/P34 G40/P24 G30/P140 G40/P130 

PCA 84.6±0.8 86.6±0.8 56.7±0.6 63.9±0.7 

R-LDA 90.8±0.8 92.8±0.8 91.2±0.4 93.5±0.3 

SLPP 79.4±5.8 82.8±1. I 75.0±8.5 81.1±1. I 

MFA 84. I±O.9 85.3±0.9 89.5±0.5 92.2±0.5 

LSDA 89.4±0.7 91.3±0.6 91.1±0.4 93.4±0.4 

ME 91.6±0.7 93.5±0.6 93.4±0.3 95.0±0.2 

, .... _ ... _ ..... _ ... _ ............................... _ .... _ ... _ .... _ ....... , ... �� ......................... .... ................... ············1 · ' 1 ( 
• .1 1 
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I.' 

_�:J:::;;::; ... I 
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---�-----------------, 

(c) ME: likelihood ratio 
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� -�����:.1.1 ! 

...... ��-.-.-.-.. -_ ..... _._._ ... .... ............. _ ... -.-.-.-�: .. ... � 
(b) LSDA 

'NN 
..... _ ..... _ ..... _------_ ..... ..... _---

(d) ME: INN distance 
Figure 2. Recognition rate (magenta line) vs. rejection rate (blue line) on 
Extended Yale-B database (G30/P34) under various threshold values e of 
the likelihood ratio in spaces: (a) LDA (b) LSDA (c) ME (margin­
enhanced space), and (d) the threshold value e' of I-NN distance in the 
margin-enhanced space. 

170 images for each subject. For both databases, all selected 
face images are manually aligned and cropped to 32x32 pixels 
and PCA is applied to save 98% energy to reduce the noise. 
The dimensionality of feature subspace is set to c-l for all 
subspace learning methods, where c is the number of subject. 
Especially for Extend Yale-B database the first 5 eigenvalues 
with corresponding eigenvectors are discarded [5]. In order to 
evaluate the performance of face recognition and imposter 
classification, the Extend Yale-B database is partitioned that 
face images of 20 subjects are used to train the margin­
enhanced space and images of the remaining 18 subjects are 
used to evaluate the rejection rate of imposter classification. 
Note that the images of 5 subjects among the remaining 18 
ones are used as the training imposter data XI to model the 
rejection likelihood probability. The similar partition is applied 
for the PIE database that face images of 40 subjects and the 
remaining 28 subjects are used to train the margin-enhanced 
space and evaluate the rejection performance, respectively. 
Images of 5 subjects among 28 subjects are used to model the 
rejection likelihood probability. 

The face recognition results performed in different spaces 
are listed in Table I. For each training and test 
combination G p / P q , where p images per training subj ect are 

TABLE II. Rejection rate using the proposed likelihood ratio and I-NN 
distance in the margin-enhanced space 

Likelihood Ratio I-NN Distance 

YaieB G30/P34 87.2±1.8 85.6±3.2 

YaieB G40/P24 87.6±1.9 86.6±2.3 

PIE G30/P140 83.6±1.7 81.6±3.5 

PIE G40/PI30 85.7±1.7 85.2±3.8 

randomly selected for the training process and the remaining q 
images are used to evaluate the recognition performance, the 
mean and the standard deviation of recognition rate performed 
by 40 random splits are reported. It can be seen that our 
proposed margin-enhanced space (ME) has higher recognition 
rate than R-LDA, SLPP, MFA and LSDA, especially for the 
PIE database. This indicates that by reweighting LSDA space 
via a trained distance metric can discover a more discriminative 
structure of the face manifold and improve the recognition 
performance. 

Fig. 2.a-2.c show the recognition and rejection rate with 
various threshold values e in different spaces. It can be 
observed that in the proposed space the system can yield higher 
recognition rate and rejection rate than in LSDA space (Fig. 2.b 
and Fig. 2.c). Moreover, to make the comparison with Fig. 2.c 
and Fig. 2.d, the proposed rejection mechanism using 
likelihood ratio, has more tolerance for the setting of threshold 
value and has promising rejection performance than the 
threshold of using I-NN distance only (i.e. the subject will be 
rejected if I-NN distance>8'). As Fig. 2.d shown, the I-NN 
distance method is sensitive to the threshold value and hence 
the imprecise setting of the threshold value will result in a very 
low rejection rate. In addition, Table II lists the rejection rates 
using the proposed likelihood ratio (17) and l-NN distance on 
test database. The threshold value e is set as discussed in 
section 4. The proposed likelihood ratio can reject more 
imposter data than the use of I-NN distance only. 

VI. CONCLUSIONS 

In this paper, a margin-enhanced space is proposed by 
reweighting the LSDA space based on the k-NN classification 
rule and unit margin constraint. In the proposed space, the local 
discriminant structure of data can be extracted and the pairwise 
distance applies for the imposter classification. Moreover, the 
acceptance and rejection likelihood probability are modeled 
using the Gaussian distribution and the likelihood ratio can be 
applied to reject the imposter (the unseen subjects). 
Experiments on Extended Yale-B and PIE databases have been 
conducted to demonstrate that the proposed system not only 
provides higher recognition performance than other subspace 
learning methods but has the promising rejection performance 
for imposter classification. 
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